Estimación del tiempo de demora en rutas pedestres: comparación de algoritmos

Joaquín Márquez Pérez, Ismael Vallejo Villalta, José Igancio Álvarez

Resumen


La estimación del tiempo de duración de un recorrido a pie requiere la consideración de múltiples factores, entre los que destacan longitud y pendiente. La revisión bibliográfica presenta distintos métodos y funciones matemáticas para la realización del cálculo con solo estos dos parámetros y, sin embargo, no son frecuentes los trabajos en que se comparan estos procedimientos entre sí y, menos aún, los que tienen como objetivo conocer si alguno de ellos puede llegar a considerarse el más adecuado en general, o incluso en unas circunstancias determinadas. Con esta idea han sido aquí aplicados seis métodos distintos para calcular el tiempo de demora en una serie de senderos de uso público del Parque Natural de la Sierra de Grazalema y sus resultados han sido comparados con datos procedentes de distintos tipos de observaciones; como consecuencia, se presentan evidencias de que dos de los procedimientos de cálculo se muestran más eficaces que los restantes.

Palabras clave


sendero, tiempo de recorrido, modelos digitales de elevaciones, pendiente

Texto completo:

PDF

Referencias


Aitken, R. (1977): Wilderness areas in Scotland, PhD Thesis, Aberdeen University.

Arnett, F. (2009): “Arithmetical route analysis with examples of the long final courses of the World Orienteering Championship 2003 in Switzerland and 2005 in Japan”, Scientific Journal of Orienteering, 17, pp. 4-21.

Bennet, D. (1985): The Munros: The Scottish Mountaineering Club Hillwalkens’ guide, Leicester: Cordee, Scottish Mountaineering Trust.

Consejería de Medio Ambiente. Junta de Andalucía (1998): Manual de señalización de Uso Público, EGMASA.

Disley, J. (1972): Orienteering, London, Faber & Faber.

Drakos, N. (1998): “The shortest path algorithm”, Cornell University.

Ericson, J. E. y Goldstein, R. (1980): “Work space: a new approach to the analysis of energy expenditure within site catchments”, Antropology, UCLA, 10 (1 & 2), pp. 21-30.

FAM (Federación Aragonesa de Montañismo) (2003): Manual MIDE, [Consulta: 01-10-2014]. Disponible en: http://www.montanasegura.com/MIDE/manualMIDE.pdf.

FEDME (Federación Española de Deportes de Montaña y Escalada) (2012): Senderos señalizados y desarrollo rural sostenible. Ministerio de agricultura, alimentación y medio ambiente. [Consulta: 01-10-2014]. Disponible en http://www.fedme.es/salaprensa/upfiles/608_F_es.pdf.

Fritz, S. y Carver, S. (1998): “Accessibility as an important wilderness indicator: modelling Naismith’s rule”, GISRUK’98. [Consulta: 01-10-2014]. Disponible en http://www.geog.leeds.ac.uk/papers/98-7/.

Fontanari, S. (2001): Sviluppo di metodologie Gis per la determinazione dell'accessibilità territoriale come supporto alle decisioni nella gestione ambientale, Tesis Doctoral Facoltà di Ingegneria- Universtá di Trento, 129 págs.

Hamer et al. (1995): “Slope class maps from soil survey and digital elevation models”, Soil Science Society of America Journal, 59 (2), pp. 509-519.

Herzog, I. (2010): “Theory and practice of cost functions”, en CAA, pp. 431-34.

Imhof, E. (1952): Gelände und Karte. Rentsch. Erlenbach bei Zurich.

Jobe, R. y White, P.S. (2009): “A new cost-distance model for human accessibility and a evaluation of accessibility bias in permanent vegetation plots in Great Smoky Mountains National Park, USA”, Journal of vegetation science, 20, pp. 1099-1109.

Kay, A. (2012): “Route choice in hilly terrain”, Geographical Analysis, 44 (2), pp. 87-108.

Kennedy, P. (1988): Wilderness rules. [Consulta: 10-07-2013]. Disponible en: http://www.gillean.demon.co.uk /Naismith/Naismith.htm.

Kondo, Y. et al. (2011): “A preliminary report for the Gps-aided walking experiments for remodelling prehistoric pathways at Kozushima island (east Japan)”, On the road to reconstructing the past: computer applications and quantitative methods in archaeology, Proceedings of the 36th International Conference, Budapest, 2008, pp. 332-338.

Langmuir, E. (1984): Mountaincraft and leadership: a handbook for mountaineers and hillwalking leaders in the British Isles, The Scottish Sport Council. Edimburgh.

Leuthäusser, U. (2013): About walking uphill: time required, energy comsumption and the zigzag transition. [Consulta: 5-10-2014]. Disponible en: http://sigmadewe.com/fileadmin/user_upload/pdf-Dateien/Bergaufgehen_engl.pdf.

Llobera, M. y Sluckin, T. J. (2007): “Zigzagging: Theoretical insights on climbing strategies”, Journal of Theoretical Biology, 249 (2), 206-217.

Margaria, R. (1938): “Sulla fisiología e specialmente sul consumo energético energético della marcia e della corsa a varia velocita ed inclinazione del terreno”, Att Acc Naz Lincei,7, pp. 299-368.

Margaria, R. (1976): “Biomechanics and energetics of muscular exercise”, Clarendom Press, Oxford.

Minetti, A. E. et al. (2002): “Energy cost of walking and running at extreme uphill and downhill slopes”, Journal of Applied Physiology, 93 (3), pp. 1039-1046.

MAGRAMA (Ministerio de Agricultura, Alimentación y Medio Ambiente) (2014): Estudio de la situación de los caminos naturales e itinerarios no monitorizados en la Unión Europea. Consulta: 09-08-2014]. Disponible en: http://www.magrama.gob.es/es/desarrollo-rural/temas/caminos-naturales/.

Naismith, W. W. (1892): Untitled, Scottish Mountaneering Club Journal, 2, 135.

Pandolf, K.B.; Haisman, M.F. y Goldman, R.F. (1976): “Metabolic energy expenditure and terrain coefficients for walking on snow”, Ergonomics, 19 (6), pp. 683-90.

Pandolf, K.B.; Giboni, G.B. y Goldman, R.F. (1977): “Predicting energy expenditure with loads while standing or walking very slowly”, Journal of Applied Physiology, 43, pp. 577-581.

Pingel, T. J. (2010): “Modeling slope as a contributor to route selection in mountainous area”, Cartography and Geographic Information Science, 37 (2),137-148.

Paris Roche, F. (2002): Método de Información para Excursiones (MIDE), Federación Aragonesa de Montañismo (FAM).

Rees, W. (2003a): “Naismith rule overhauled”, Scottish Mountaneering Club Journal, submitted for publication.

Rees, W. (2003b): “Least cost in mountainous terrain”, Computers and Geosciences, 30 (3), 203-209.

Saibene, F. y Minetti, A. (2002): “Biomechanical and physiological aspects of legged locomotion in humans”, Journal of Applied Physiology, 88 (4-5), pp. 297-316.

Santee, W.R., Allison, W.F. Blanchard, L.A., y Small, M.G. (2001): “A proposed model for load carriage on sloped terrain”, Aviation, Space and Environmental Medicine, 72 (6), pp. 562-566.

Scarf, P. (2007): “Route choice in mountain navigation, Naismith’s rule, and the equivalence of distance and climb”, Journal of Sports Sciences, 25 (6), pp. 719-726.

Soule, R. y Goldman, R. (1972): “Terrain coefficients for energy cost prediction”, Journal of Applied Physiology, 32, pp. 706-708.

Tobler, W. (1991): Non-isotropic geographic modeling. Technical report.

Weathley, D. y Gillings, M. (2002): Spatial technology and archaeology. The archaeological applications of GIS, Taylor and Francis, London, New York.

White, D.A. y Barber, S.B. (2012): “Geospatial modeling of pedestrian transportation networks: a case study from pre-Columbian Oaxaca, Mexico”, Journal of archaeological science, 39, pp. 2684-2696.

White, D.A. (2012): Transportation, integration, facilitation: Prehistoric trail networks of the western Papaguería: a multifaceted least cost analysis of social landscapes: archaeological case studies, University of Utah Press, Salt Lake City.

Wood, B. M. y Wood, Z. J. (2006): “Energetically optimal travel across terrain: visualizations and a new metric of geographic distance with archaeological applications”, en SPIE Proceedings: San Jose, CA, vol. 6060.

Wood, N. J. y Schmidtlein, M. C. (2012): “Anisotropic path modeling to assess pedestrian-evacuation potential from Cascadia-related tsunamis in the US Pacific Northwest”, Natural Hazards, 62, Springer, pp. 275-300.




Licencia Creative Commons

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.


GeoFocus es la revista del Grupo de Tecnologías de la Información Geográfica de la Asociación de Geógrafos Españoles. Recibe soporte institucional y técnico de RedIRIS (Red Española de I+D soportada por el Gobierno de España), de la FECYT (Fundación Española para la Ciencia y la Tecnología) y Grumets (Grupo de Investigación Métodos y Aplicaciones en Teledetección y Sistemas de Información Geográfica).